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1 Introduction

Understanding how meanings are conveyed through messages is a fundamental aspect of commu-
nication, and we wish to find the most efficient ways to achieve this. Specifically, this paper aims
to determine the optimal way to assign meanings to a set of messages in a highly idealized setting.

Central to our discussion is the concept of “expected utility,” a key notion in decision theory and
economics. Expected utility allows us to quantify the desirability or value associated with uncertain
events or outcomes – the outcome here being the messages we choose to say. In this context, we
examine how expected utility measures the efficiency of a language and can guide the allocation of
meanings to messages in an optimal manner1. To introduce the problems we are dealing with, let
us start with a simple scenario:

1This way of measuring the efficiency of a language has roots in information theory and has been recently developed
for linguistic pragmatics, giving rise to a formal framework known as the Rational Speech Act model (cf Bergen,
Levy, and N. Goodman 2016 and N. D. Goodman and Stuhlmüller 2013). This model defines a notion of the utility
of a message in a given situation for a speaker. With extra assumptions, one can then think about the expected
utility of a language as a whole and try to explain certain universal tendencies as arising from maximization of this
expected utility. This perspective is for instance adopted in Enguehard and Spector 2021, who offer an account for
why a quantifier such as ‘not all’ is never lexicalized across languages.
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Two messages2 m1 and m2 are used to communicate events e1 and e2 which have prior prob-
abilities of p1 and p2 with p1 > p2, and let us call p12 the probability of their conjunction – that
is, e1 and e2 being both true. In information theory, the “information content” of an event with
probability p is given by − log(p). (We will write log for logarithm to the base e.) The function
p 7→ − log(p) is decreasing over [0, 1]. Hence m2 which has a lower probability conveys more infor-
mation than m1 because it is more precise or less common than m1. To understand this intuitively,
let us take two examples from everyday language. First imagine that m1 = ‘mammal’ and m2 =
‘rabbit’. The messages are not disjoint here. Rabbits are part of the mammals, therefore m2 is
more precise. We can also imagine two messages that are disjoint, for instance m1 =‘right-handed’
and m2 = ‘left-handed’. There are much more right-handed people than left-handed people. Most
of the time, being right-handed is not “worth mentioning”. Lefties are less common, so saying that
someone is left-handed is more informative.

Consider a rational speaker who wants to maximize information transmission and can only use
(at most) one message. The term ‘rational’ will be mathematically defined further on, for this
example it just means that the speaker has a goal in mind (to maximize efficiency) when they
communicate and doesn’t choose their messages at random. They will use m2 when m2 is true,
irrespective of the truth-value of m1, because m2 is more informative than m1. They will use
m1 whenever m1 is true and m2 is false. When both messages are false they will say nothing.
Therefore, the expected value (in a probabilistic sense) of the information the speaker will convey
i.e. the expected utility is

−p2 log(p2)− (p1 − p12) log(p1)

How should we choose p1, p2 and p12 so as to maximize this quantity ?
With no assumptions about independence, the answer is p1 = p2 =

1
e and p12 = 0. It contradicts

the assumption that p1 > p2 but it shows that the optimal lexicalization for two messages and one
‘spot’ to say a message is to have two incompatible messages having the same probability 1

e . These
values correspond to a utility of 2

e .
If we constraint the messages to be independent, then we will try to maximize

−p2 log(p2)− (1− p2)p1 log(p1)

This is achieved by taking p1 = 1
e and p2 = 1

e1+
1
e
, corresponding to a utility of 1

e + 1

e1+
1
e
which is

less than in the non-independent case.
One may also wonder what the most beneficial addition (in terms of maximizing expected

utility) to our set of two messages would be: a negation or a third message? At first glance,
negation would seem more beneficial because we would then be able to communicate 4 messages:
m1,m2,¬m1 and ¬m2. However, a simple reasoning proves that negation is in fact never more
useful than an additional message (but this is only valid in the case where only one message can
be used). Among the 3 most informative messages of the 4, one is the negation of another, and so
on every occasion at least one of the 3 is true. Hence the least informative message of the 4 cannot
be used at all because in any situation at least one of the other three messages is true and will be
chosen instead. This means that we are going to use only 3 messages, with the constraint that one
is the negation of another. The best lexicalization that can be achieved under this constraint can
also be achieved by a system with 3 messages under no specific constraint. So the best lexicalization
with [2 messages + negation] is not better than the best lexicalization with 3 messages.

2A ‘message’ can simply be understood as a symbol, a signal. For instance, in animal communication, that could
be a gesture or a vocal signal denoting a predator.
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As a side note, if the listener is “smart”, they will understand that m2 is false when the speaker
uses m1, so in a sense the message is now interpreted as meaning “m1 and not m2”. Likewise,
the listener will understand from “silence” that both are false. Then the expected information
conveyed by the language would be

−p2 log(p2)− (p1 − p12) log(p1 − p12)− (1− (p1 + p2 − p12)) log(1− (p1 + p2 − p12))

We can define three new probabilities p′2 = p2, p
′
1 = p1 − p12 and p′3 = 1 − (p1 + p2 − p12) that

correspond respectively to three disjoint events: e2, e1 ∧ ¬e2, ¬e1 ∧ ¬e2. It will be shown further
on that the best lexicalization assigns a probability of 1

3 to each of the disjoint events. Solving for
the original pi’s, we get p1 =

2
3 , p2 =

1
3 and p12 =

1
3 .

We will tackle these kinds of questions for various setups, taking into account the following
parameters:

1. N , the number of (atomic) messages the language contains

2. S, the number of messages that can be used in one utterance

3. whether the messages are probabilistically independent

4. whether the language includes a negation

2 Theoretical framework

• We fix once and for all a certain probability space (Ω, F,P), with the condition that for any real
number x in [0, 1], there is an event E (i.e. an element of F ) such that P(E) = x. We call worlds
the elements of Ω.

• We consider a language with a vocabulary consisting of a set of N propositional atoms a1, . . . , aN
and possibly a negation notated ¬ (we will consider both languages with and without negation.)

• A literal is either an atom a or the concatenation of the negation symbol with an atom (¬a). If
the language does not have negation, a literal is simply an atom.

• S (for ‘spots’) denotes the number of literals from L that can be uttered on a particular occasion.
The set of messages M(L) of this language is the set of all subsets of literals that contain at most
S literals.

• A semantics σ (or lexicalization) for L is a function from M(L) to events with positive
probability 3 such that (if the message is a singleton, e.g. {l}, then instead of writing σ({l}), we
simply write σ(l)): if the language includes negation, then for every atom a, σ(¬a) = Ω\σ(a); the
event corresponding to a message is the intersection of all events corresponding to each literal

3The restriction to events with positive probability is not necessary but makes a few things easier, and can be
made without loss of generality. This is because we are interested in the optimal semantics, and a semantics in which
a message m denotes an event with probability 0 is such that the contribution of m and ¬m to the expected utility
of a language will necessarily be 0 (−1× log(1) = 0 and under the convention −0× log(0) = 0), so that it can never
be worse to instead map m to some event with positive probability.
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in the message i.e. if m is a message {l1, . . . , lk}, then σ(m) =
⋂

1≤i≤k

σ(li) . As a reminder,

those events are –in this setting– measurable subsets of [0, 1]. Saying that a message is true at
a given world (i.e. a real number in [0, 1]) is simply saying that this world belongs to the event
corresponding to the message.

• Given a world w ∈ Ω, we say that a message m is optimal (for {L, σ}) in w if w ∈ σ(m) (i.e. m
is true in w), and for every message m′ which is true in w, P(σ(m)) ≤ P(σ(m′)).

• A speaker s of L paired with a semantics σ – a speaker of {L, σ} for short – is a function from
Ω to M(L). We notate ms

w the image of w under this function i.e. ms
w is the message that s uses

in w.

• A truthful speaker of {L, σ}, is a speaker S of {L, σ} such that for every world w, w ∈ σ(ms
w).

• A rational speaker of {L, σ} is a speaker S of {L, σ} such that for every world w, ms
w is {L, σ}-

optimal in w.

• Given a pair {L, σ}, the utility (or informativity) of a message m in world w, notated u(m|w),
is −∞ if m is false in w (i.e. w /∈ σ(m)), and is equal to − log(P(σ(m))) otherwise.

• For any speaker s of {L, σ}, the utility function of s, notated us, is defined by us(w) =
u(ms

w|w). If a speaker s is truthful we have, for any w, us(w) = − log(P(σ(ms
w))).

• The expected utility of a speaker s, notated U(s), is defined as the expected value of us.
For concreteness, we provide an example where Ω is the real interval [0, 1], F is the set of all
measurable subsets of [0, 1] and P is the probability distribution associated with the uniform

density function f over [0, 1]. Then we have U(s) =
1∫
0

f(w)us(w)dw. If s is truthful, U(s) =

−
1∫
0

f(w) log(P(σ(ms
w)))dw

• The utility of a language L is defined as sup
σ
(U(L, σ)). It is guaranteed to exist because for

every language L with n messages and every semantics σ for this language, U(L, σ) ≤ n

e

Proof. A rational speaker of {L, σ} is truthful, hence can only use a message m in a world w if
m is true in w. When such a speaker uses a message m, the contribution of m to the overall
expected utility is at most −P(σ(m)) log(P(σ(m))). Since x 7→ −x log(x) reaches its maximum 1

e
at x = 1

e , the contribution of a message m to the overall utility is at most 1
e . If there are exactly

n messages in L, U(L, σ) ≤ n
e for every σ.

Consider a rational speaker s who is context sensitive i.e. observes the world then chooses
among the true literals the S ones with maximal informativity. Then consider a receiver who
starts with the same knowledge (probability distribution) as the speaker. If the goal of language
is to exchange information, then an optimal lexicalization should allow a perfectly rational and
cooperative speaker s to convey as much true information as possible – that is to say, the expected
utility of speaker s should be maximal.
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To streamline the notations, we write pi for P(σ((ai)
s
w)), so there is an implicit dependence of

the pi’s (as well as the expected utility) on the lexicalization σ. Likewise, for a message m, we
write P(m) for P(σ(ms

w)).

3 One-spot case (S = 1)

We consider a language without negation and will start by examining the optimal lexicalization
when no assumption is made about independence.

3.1 Non-independent messages

When there’s only one message denoting an event with probability p, the expected utility is
−p log(p) is maximized with p = 1

e . When there are 2 messages with probabilities p1 and p2,
the utility −(p1 log(p1) + p2 log(p2)) is maximized with p1 = p2 =

1
e .

We now consider N > 2 messages. In the specific case where they are incompatible, it’s not
possible to assign probability 1

e to each message since 3× 1
e > 1.

Proposition In the best lexicalization for N > 2 mutually incompatible messages, each message
has probably 1

N (therefore, they exhaust the logical space).

Proof. The function x 7→ −x log(x) is increasing from 0 to 1
e (and reaches its maximum at 1

e ). If

the N messages correspond to events that do not cover the whole logical space i.e.
N∑
i=1

pi < 1, then

at least one of the messages mi corresponds to an event with probability lower than 1
N (because

they are disjoint), hence lower than 1
e (because 1

3 < 1
e ). Consider an alternative lexicalization

where all messages except mi denote exactly the same events, but mi has probability p′i such that
pi < p′i < 1

e . This is possible since the messages do not cover the whole logical space. This
alternative lexicalization achieves higher expected utility than the one we started with, because
−p′i log(p

′
i) > −pi log(pi). Hence any optimal lexicon will cover the whole logical space. We therefore

need to maximize −
N∑
i=1

pi log(pi) with the constraint
N∑
i=1

pi = 1, which we know is achieved by taking

p1 = . . . = pN = 1
N .

3.2 Necessity for non-independence in the optimal lexicalization

(Based on previous notes by Benjamin Spector and an argument from Keny Chatain)

Proposition For any lexicon, there exists a lexicon with disjoint atoms that achieves better or
equal utility.

Proof. Let ei be the events denoted by the messages mi. Without loss of generality, we assume
that ei are ordered in decreasing order of probability (so m1 is the least informative message). Let
fi = ei ∧ (∀j > i,¬ej) We will show that if the same messages denoted the events fi, they would
form a language with at least as great utility.
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Let prob-e∗(w) be the probability of the most informative message for world w if mi refers to
ei and prob-f∗(w) if they refer to fi. If no message can be used in w, we will assume prob-e∗(w) =
prob-f∗(w) = 1.

Given a world w, let I = {1 ≤ i ≤ N, ei(w) is true}. If I is empty, then none of the ei are true
in w. By definition, none of the fi will be true either. Hence prob-e∗(w) = prob-e∗(w) = 1.

If I is non-empty, let opt = max I. Since the ei are decreasing in probability, mopt is necessarily
the most informative message or one of the most informative messages if there are ties. Therefore,
P(eopt) = prob-e∗(w). Trivially, by definition, fi implies ei and P(fi) ≤ P(ei) for all i. Furthermore,
fopt is true in w (because ∀i > opt, ei is false). So:

prob-f∗(w) ≤ P(fopt) ≤ P(eopt) = prob-e∗(w)

In both cases, we have prob-f∗(w) ≤ prob-e∗(w). The proposition follows by taking expectations.

Nevertheless, we shall examine the optimal lexicalization under the constraint of independence
although we know that it is not overall optimal. Apart from providing an interesting mathematical
exercise, this is motivated by the fact that, empirically, our common lexicon consists of messages
that are more often than not independent. This is also true of primate communication, where the
most common messages are warnings for different predators and are therefore independent.

3.3 Independent messages

(Based on previous notes by Emmanuel Chemla)

We start by computing by hand the expected utility for N = 3 in order to get an idea as to
the generalization. Let p1 > p2 > p3.
a3, being the most informative atom, is used whenever it is true. a2 is used when it is true and
when the atoms more informative than itself – that is a3 – are false. The same goes for a1. So, the
expected utility UN,S is given by:
U3,1(p1, p2, p3) = −p3 log(p3)− (1− p3)p2 log(p2)− (1− p3)(1− p2)p1 log(p1)
For whatever choices of p2 and p3, the maximum for the third term is obtained by taking p1 = 1

e .
Let p̂1 =

1
e

U3,1(p̂1, p2, p3) = −p3 log(p3)− (1− p3)p2 log(p2) +
1

e
(1− p2)(1− p3)

= −p3 log(p3)− (1− p3)(p2 log(p2)−
1

e
(1− p2))

The function p2 7→ −p2 log(p2) +
1
e (1− p2) reaches its maximum at p̂2 = exp(−(1 + p̂1))

U3,1(p̂1, p̂2, p3) = −p3 log(p3)− (1− p3)(−p̂2(1 + e−1)− 1

e
(1− p̂2))

= −p3 log(p3) + (1− p3)(p̂2 + p̂1)

The function p3 7→ −p3 log(p3)+ (1−p3)(p̂2+ p̂1) reaches its maximum at p̂3 = exp(−(1+ p̂1+ p̂2))
Thankfully p̂1 > p̂2 > p̂3.
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Generalization

Let 1 > p1 ≥ . . . ≥ pN > 0. In this whole document, we will consider probabilities different from 0
and 1.

UN,1(p1, . . . , pN ) = −
N∑
k=1

N∏
i=k+1

(1− pi)pk log(pk)

Similarly, at the k-th step we factorize the last term of UN,1(p1, . . . , pn) by a function of pk. The

derivative of that function will be −(1 + log(pk) +

k−1∑
i=1

pi), so the optimal lexicalization is obtained

by taking p̂k = exp(−(1 +
k−1∑
i=1

p̂i))

Actually, the way in which we proceeded amounts to the same as setting all the partial derivatives
over the pi’s equal to zero. It is also possible to get the same result without computing by hand
and directly from the general formula of the expected utility for S spots in the case of independent
messages:

UN,S(p1, . . . , pN ) = −
N∑
i=1

P(#{true atoms among ai+1, . . . , aN} < S)pi log(pi)

For some 1 ≤ k ≤ N , this can be written as:

UN,S(p1, . . . , pN ) =−
N∑

i=k+1

P(#{TA among ai+1, . . . , aN} < S)pi log(pi)

− P(#{TA among ak+1, . . . , aN} < S)pk log(pk)

− pk

k−1∑
i=1

P(#{TA among ai+1, . . . , aN but not ak} < S − 1)pi log(pi)

− (1− pk)
k−1∑
i=1

P(#{TA among ai+1, . . . , aN but not ak} < S)pi log(pi)

Hence

∂UN,S

∂pk
= −P(#{TA among ak+1, . . . , aN} < S)(1 + log(pk))

−
k−1∑
i=1

[
P(#{TA among ai+1, . . . , aN but not ak} < S − 1)

− P(#{TA among ai+1, . . . , aN but not ak} < S)
]
pi log(pi)

= −P(#{TA among ak+1, . . . , aN} < S)(1 + log(pk))

+
k−1∑
i=1

P(#{TA among ai+1, . . . , aN but not ak} = S − 1)pi log(pi)
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Applying the law of total probability, we have

p̂k = exp
[
− 1 +

1∑S−1
α=0 P(#{TA among ak+1, . . . , aN} = α)

×

S−1∑
α=0

P(#{TA among ak+1, . . . , aN} = α)

k−1∑
i=1

P(#{TA among ai+1, . . . , ak−1} = S − 1− α)pi log(pi)
]

For S = 1, when all the partial derivatives are set to zero, we have

p̂k = exp
[
− 1 +

k−1∑
i=1

P(none of ai+1, . . . , ak−1 is true)p̂i log(p̂i)
]

This allows us to show that p̂k = exp(−(1 +

k−1∑
i=1

p̂i)) for every 1 ≤ k ≤ N .

Proof. By induction:
Base case It has already been shown that p̂1 =

1
e .

Induction hypothesis Suppose for some 1 ≤ k ≤ N − 1 that p̂k = exp(−(1 +

k−1∑
i=1

p̂i))

Induction step

p̂k+1 = exp
[
− 1 +

k∑
i=1

P(none of ai+1, . . . , ak is true)p̂i log(p̂i)
]

= exp
[
− 1 +

k−1∑
i=1

P(none of ai+1, . . . , ak is true)p̂i log(p̂i) + p̂k log(p̂k)
]

= exp
[
− 1 + (1− pk)

k−1∑
i=1

P(none of ai+1, . . . , ak−1 is true)p̂i log(p̂i) + p̂k log(p̂k)
]

= p̂k × exp
[
− p̂k

( k−1∑
i=1

P(none of ai+1, . . . , ak−1 is true)p̂i log(p̂i)− log(p̂k)
)]

= exp(−(1 +

k−1∑
i=1

p̂i))× exp(−p̂k)

p̂k+1 = exp(−(1 +

k∑
i=1

p̂i))

This proves that the best lexicalization is incrementally optimized, as the optimal probability
for ak does not depend on the probabilities of the atoms more informative than itself. We can
compare this to the case where the pi’s are constrained i.e. only events having a certain fixed
probability p are lexicalized. If p1 = . . . = pN = p then

UN,1(p, . . . , p) = −p log(p)

N∑
k=1

(1− p)N−k = − log(p)(1− (1− p)N )
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In either case, there’s no closed-form expression of the maximum utility UN,1(p̂1, . . . , p̂N ). Conse-
quently, the computations were performed using Python.:

Two conjectures can be made from the graph:

• If some but not all of the pi’s are tied, the scatterplot would lie between those for ‘no ties’
and ‘all ties’ (but we haven’t tried to prove this).

• In the ‘no ties’ case, the maximum utility as a function of N is equivalent to log(N).

Proof. When S = 1 and p1 ≥ . . . ≥ pN+1 , we have the following induction formula:

UN+1,1(p1, . . . , pN+1) = −pN+1 log(pN+1) + (1− pN+1)UN,1(p1, . . . , pN )

∂UN+1,1

∂pN+1
= 0 ⇐⇒ −1− log(pN+1)− UN,1 = 0

Thus the maximum of UN+1,1 is reached when p̂N+1 = exp(−UN − 1). (To alleviate notations, the
argument is still (p̂1, . . . , p̂N ) for UN,1 and (p̂1, . . . , p̂N+1) for UN+1,1 but we won’t write it every
time.) Injecting that in the previous expression for UN+1,1 leads to

UN+1,1 = −p̂N+1(−UN,1 − 1) + (1− p̂N+1)UN,1

= e−UN,1−1 + UN,1

= p̂N+1 + UN,1

Therefore UN,1(p̂1, . . . , p̂N ) =
N∑
k=1

p̂k. If we define VN,1 = UN,1 +1 then VN+1,1 = e−VN,1 + VN,1 and

VN,1 is roughly like log(N). We can also assume that pN is roughly like 1
N .
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Graphically, it seems that UN,1(p̂1, . . . , p̂N ) is indeed roughly like −1 + log(N). The orange and
blue curves are almost superimposed.

3.4 Is negation ever useful ?

(Based on previous notes by Benjamin Spector)

If we have N messages and negation, we can communicate 2N messages in total. Suppose all
the messages have different probabilities. When we order them by informativity, we find that
among the (N +1) most informative messages, there is a pair of the form {m,¬m} (by the pigeon-
hole principle). As the speaker is sure to find one true message among the first (N + 1) ones, they
will never use any message less informative than those (N + 1) ones. With no other constraints,
such as disjointness or independence, adding negation is like adding only one message, but with a
constraint on its probability which is absent if we are free to lexicalize the additional message as we
want. Therefore, the benefit of adding negation is – when all messages correspond to events with
different probabilities (no ties) – always less than what one gets from adding adding a new lexical
message.

The previous argument does not generalize to the case where any ties are allowed but the the-
orem below still holds when ties are taken into account. The general proof has not been studied in
the context of this internship.

Theorem For S = 1, the utility of a language with N + 1 propositional atoms is at least as high
as that of a language with N propositional atoms and negation.
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4 Multi-spots case (S > 1)

We consider the case of independent messages with p1 ≥ . . . ≥ pN .
Let us recall the formula

UN,S(p1, . . . , pN ) = −
N∑
i=1

P(#{true atoms among ai+1, . . . , aN} < S)pi log(pi)

Each term of the sum arises from the question “when is the atom ai being used ?”. An alternative
expression is to write each term considering the number of simultaneously true atoms rather than
each atom separately (I denotes the set of indices for which the ai are true):

UN,S(p1, . . . , pN ) = −
∑

I⊂J1,NK
1≤|I|≤S

∏
i∈I

pi
∏
j /∈I

(1−pj)
∑
i∈I

log(pi)−
∑

I⊂J1,NK
S+1≤|I|≤N

∏
i∈I

pi
∏
j /∈I

(1−pj)
∑

S smallest among pi,i∈I

log(pi)

Adding negation:

UN∋neg,S(p1, . . . , pN ) =

−
∑

I⊂J1,NK
1≤|I|≤S

∏
i∈I

pi
∏
j /∈I

(1−pj)(
∑
i∈I

log(pi)+
∑
j /∈I

log(1−pj))−
∑

I⊂J1,NK
S+1≤|I|≤N

∏
i∈I

pi
∏
j /∈I

(1−pj)
∑

S smallest among pi,i∈I

log(pi)

With the expression in this form, it is straightforward to see that for fixed values of the pi’s,
adding negation is always beneficial:

UN,S(p1, . . . , pN )− UN∋neg,S(p1, . . . , pN ) =
∑

I⊂J1,NK
1≤|I|≤S

∏
i∈I

pi
∏
j /∈I

(1− pj)
∑
j /∈I

log(1− pj) < 0

In order to conjecture a general proof, we start with computations by hand of the cases S = N−1
or S = N − 2 for N = 3 and N = 4 without negation.

3-message case

Let N = 3, S = 2 and p1 ≥ p2 ≥ p3.
U3,2(p1, p2, p3) = −p1(1− p2p3) log(p1)− p2 log(p2)− p3 log(p3)
∂U3,2

∂p1
= p2p3(1 + log(p1))

∂U3,2

∂p2
= −(1 + log(p2)) + p1p3 log(p1)

∂U3,2

∂p3
= −(1 + log(p3)) + p1p2 log(p1)

U3,2 is maximized with


p̂1 = 1/e

p̂2 = exp(−(1 + 1
ep3))

p̂3 = exp(−(1 + 1
ep2))

Let f : x 7→ exp(−(1 + x
e )) which is a decreasing function. p̂2 and p̂3 are both solutions to

x = f ◦ f(x). As f ◦ f is strictly monotone over [0, 1] with f ◦ f(0) > 0 and f ◦ f(1) < 1, it has
only exactly one fixed point in [0, 1]. Therefore p̂1 > p̂2 = p̂3.
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That prompts us to ask if each of the smallest S p̂i’s can generally be expressed in terms of itself
and whether those S ones are always equal.

4-message case

Let N = 4, S = 3 and p1 ≥ p2 ≥ p3 ≥ p4
U4,3(p1, p2, p3, p4) = −p1(1− p2p3p4) log(p1)− p2 log(p2)− p3 log(p3)− p4 log(p4)
∂U4,3

∂p1
= −(1− p2p3p4)(1 + log(p1)) = 0 ⇐⇒ p1 = 1/e

∂U4,3

∂p2
= −(1 + log(p2)) + p1p3p4 log(p1) = −(1 + log(p2))− p3p4

e

Likewise
∂U4,3

∂p3
= −(1 + log(p3))− p2p4

e and
∂U4,3

∂p4
= −(1 + log(p4))− p2p3

e

U4,3 is maximized with


p̂1 = 1/e

p̂2 = exp(−(1 + 1
ep3p4))

p̂3 = exp(−(1 + 1
ep2p4))

p̂4 = exp(−(1 + 1
ep2p3))

It seems that p̂2, p̂3 and p̂4 cannot be shown to be equal from something as simple as a cyclic sys-
tem of equations as we had surmised from the N = 3, S = 2 case. However we can show pairwise
equalities:
Considering p4 a constant, p̂2 and p̂3 are both solutions to x = f ◦f(x) with f : x 7→ exp(−(1+ p4x

e )).
(f ◦ f)′(x) = (a positive constant)× exp(a bunch of things) which is sufficient to say that f ◦ f is
strictly monotone. As in the above, we have f ◦ f(0) > 0 and f ◦ f(1) < 1. So p̂2(p4) = p̂3(p4).
Similarly, we get p̂2(p3) = p̂4(p3) and p̂3(p2) = p̂4(p2), which gives p̂2 = p̂3 = p̂4.

Now take N = 4, S = 2 and p1 ≥ p2 ≥ p3 ≥ p4
U4,2(p1, p2, p3, p4) = −p1(p2(1− p3)(1− p4) + (1− p2)p3(1− p4) + (1− p2)(1− p3)p4 + (1− p2)(1−
p3)(1− p4)) log(p1)− p2(1− p3p4) log(p2)− p3 log(p3)− p4 log(p4)
∂U4,2

∂p1
= −(1 + log(p1))× whatever = 0 ⇐⇒ p1 = 1/e

∂U4,2

∂p2
= −(1− p3p4)(1+ log(p2)) + p1 log(p1)(p3(1− p4) + p4(1− p3)) = −(1− p3p4)(1+ log(p2))−

p3(1−p4)+p4(1−p3)
e

∂U4,2

∂p3
= p1 log(p1)(p2(1− p4) + p4(1− p2)) + p2p4 log(p2)− (1 + log(p3))

∂U4,2

∂p4
= p1 log(p1)(p2(1− p3) + p3(1− p2)) + p2p3 log(p2)− (1 + log(p4))

U4,2 is maximized with



p̂1 = 1/e

p̂2 =?? (we need to compute p̂3 and p̂4 first)

p̂3 = exp(−1 + p2p4 log(p2)−
p2(1− p4) + p4(1− p2)

e
)

p̂4 = exp(−1 + p2p3 log(p2)−
p2(1− p3) + p3(1− p2)

e
)

The same kind of argument as in the previous cases shows that p̂3 = p̂4. Simplifying the partial
derivative with respect to p2:

12



∂U4,2

∂p2
= −(1− p23)(1 + log(p2))−

2p3(1− p3)

e
= 0

Therefore p̂2 = exp(−(1 +
2p̂3

e(1 + p̂3)
)) < p̂1. Finally, a graphical resolution ensures that p̂3 < p̂2.

Generalization for S = N − 1

UN,S(p1, . . . , pN ) = −p1(1−
N∏
i=2

pi) log(p1)−
N∑
i=2

pi log(pi)

∂UN,S

∂p1
= −(1−

N∏
i=2

pi)(1 + log(p1)) = 0 ⇐⇒ p̂1 = 1/e

∂UN,S

∂pj ̸=1
=

N∏
i=1
i ̸=j

pi log(p1)− (1 + log(pj)) = 0 ⇐⇒ p̂j = exp(−(1 +
1

e

N∏
i=2
i ̸=j

pi))

Let j, k ̸= 1 and f : x 7→ exp(−(1 + 1
ex)). Suppose pj < pk. Then f(p1 × . . .×��pk × . . .× pN ) <

f(p1 × . . .×��pj × . . .× pN ) (because f is a decreasing function) i.e. pk < pj because the pi ̸=1’s are
such that pi = f(p1 × . . .×��pi × . . .× pN ). Contradiction. Therefore all the p̂i ̸=1 are equal. Let p̂N
denote their value.
p̂N is such that p̂N = exp(−(1 + 1

e p̂
N−1
N )). We wish to show that p̂N

<−−−−−→
N→+∞

1
e

Let m = N − 1. p̂N is solution to x = exp(−(1 + xm

e )). We note that:

x = exp(−(1 +
xm

e
)) ⇐⇒ (xe)−m = exp(

mxm

e
)

⇐⇒ me−m−1 =
mxm

e
exp(

mxm

e
)

⇐⇒ mxm

e
= W0(me−m−1)

⇐⇒ x = m

√
e

m
W0(me−m−1)

where W0 denotes the principal branch of the Lambert W function.
W is the converse function of w 7→ wew and ∀z ∈ C wew = z ⇐⇒ ∃k ∈ Z, w = Wk(z) where
the Wk’s denote the branches of the Lambert W function. Here we will only be dealing with the
principal branch W0 because the argument (me−m−1) is a positive real number and k = 0 is the
only branch satisfying Wk(x)e

Wk(x) = x for x > 0.
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Figure 1: Two main branches of the Lambert W function. Reproduced from Nguyen et al. 2022.

There is no convenient closed-form expression for any of the branches but we need to find a
lower bound for W0(me−m−1), at least for great values of m. We shall be accepting the following
theorem:

Lagrange inversion theorem

If z is defined as a function of w by the relation f(w) = z where f is analytic at point a and

f ′(a) ̸= 0, then w = g(z) with g being defined by a power series g(z) = a+
+∞∑
n=1

gn
(z − f(a))n

n!
where

gn = lim
w→a

dn−1

dwn−1 [(
w − a

f(w)− f(a)
)n]

Applying this to f : w 7→ wew, the Taylor series of W0 around a = 0 is given by

W0(z) =
+∞∑
n=1

zn

n!
( lim
w→0

dn−1e−nw

dwn−1
)

=

+∞∑
n=1

zn

n!
( lim
w→0

(−n)n−1e−nw)

=

+∞∑
n=1

(−n)n−1 z
n

n!

In order to find a lower bound, it is sufficient to stop at the 3rd order: W0(z) = z − z2 +O(z3).
In particular ∀x > 0 W0(x) ≥ x− x2
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Therefore

p̂N = m

√
e

m
W0(me−m−1)

≥ m

√
e

m
(me−m−1 − (me−m−1)2)

= m

√
e−m(1− m

em+1
)

=
1

e
N−1

√
1− N − 1

eN

<−−−−−→
N→+∞

1

e

Interpretation of the result: when the number of spots is such that only one message may not be
uttered, the optimal p̂i’s all converge to 1

e as the size of the lexicon increases. It seems intuitively
consistent that the case where “almost anything can be uttered” converges to the limiting case
where “anything can be uttered” i.e. S ≥ N (then we have ∀i ≥ 1 p̂i =

1
e ).

5 Conclusion

In this report, the case S = 1 has been thoroughly addressed, and we have shown that the best
lexicalization for independent messages requires an incremental optimization of the probabilities
and offers a surprisingly simple expression for the utility of the corresponding language. Due to time
constraints, we have not addressed the general case of non-independent messages when S > 1. Even
for independent messages, we cannot yet propose a generalization of the above result for S = N −k

when k is other than 1, but we may conjecture that the result p̂N
<−−−−−→

N→+∞
1
e can be extended to

S = N −k for any integer k. A possible line of reasoning for future continuation of this study could
make use of the induction formula UN+1,S = (1 − pN+1)UN,S + pN+1(− log(pN+1) + UN,S−1). It
would also be interesting to investigate whether negation becomes useful when S > 1 and, if so, at
what stage.
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