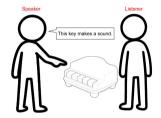
Less is more: a non-verbal approach to anti-exhaustivity

Student Session ESSLLL 2025

Claire Rong Shiyun (Iris) Dong clairerongfr@gmail.com shiyun.dong@ens.psl.eu

Based on joint work with Prof. Benjamin Spector

Department of Cognitive Studies, École Normale Supérieure, Paris


August 7, 2025

Outline

- 1 Introduction: Exhaustivity vs. Anti-exhaustivity
- 2 Basic scenario: 2 keys
- 3 Generalization to n keys
- 4 Model simulations
- 5 Conclusion

- Introduction: Exhaustivity vs. Anti-exhaustivity
- Basic scenario: 2 keys
- Generalization to n
- Model simulations

Introduction: Exhaustivity in verbal communication

Introduction: Exhaustivity vs. Anti-exhaustivity

Basic scenario: 2 kevs

Generalization to nakeys

Model simulations

Conclusion

Reference

Exhaustivity: "This key makes a sound" → Only this key makes a sound.

Two approaches to strengthening:

- Gricean: speaker's intent
- 2 Grammatical: silent "only" operator (Chierchia, Fox, and Spector 2012)

Introduction: Anti-exhaustivity in verbal communication

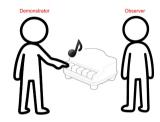
Experimental results: Cremers, Wilcox, and Spector 2023

Use models from the Rational Speech Act framework (Frank and Goodman 2012). Show that many RSA models predict not only exhaustivity, but also anti-exhaustivity when priors are skewed.

Anti-exhaustivity in a nutshell: for a speaker, it means using a less informative message to trigger a more informative inference; for a listener, it means to assign a posterior probability to the less informative message higher than the prior probability.

- 2 Present language production and comprehension experiment data \rightarrow no trace of anti-exhaustivity.
- 3 Results indicate that subjects are not rational in a Bayesian sense.

Introduction: Exhaustivity vs. Anti-exhaustivity


Basic scenario: 2 keys

Generalization to keys

Model simulation

Conclusion

Introduction: Anti-exhaustivity in non-verbal communication

Introduction: Exhaustivity vs. Anti-exhaustivity

Basic scenario: kevs

Generalization to keys

Model simulation

Conclusion

Reference

Instead of speaking, the speaker demonstrates with an action. They press only one key, and it makes a sound.

The fact that the key makes a sound > Only that key makes a sound.

There is **no exhaustivity inference**. But anti-exhaustivity **is not just the absence of exhaustivity!** The observer might think that the demonstrator purposefully pressed only one key because all keys have the same behavior.

Introduction: Anti-exhaustivity in non-verbal communication

Introduction: Exhaustivity vs. Anti-exhaustivity

Basic scenario: 2 keys

Generalization to r

Model simulations

Conclusio

Reference

Anti-exhaustivity conditions for the observer

P(all keys make a sound | the demonstrator's action)

posterior probability

> P(all keys make a sound | 'This key makes a sound" is true) \leftarrow prior probability

Introduction: Anti-exhaustivity in non-verbal communication

Anti-exhaustivity on the demonstrator's part: knows that all keys make a sound, but does not press all of them after considering tradeoff between informativity and cost.

Introduction: Exhaustivity vs. Anti-exhaustivity

Basic scenario: 1 keys

Generalization to kevs

Model simulation

Conclusio

References

Intuitive predictions

- Anti-exhaustivity arises more easily in non-verbal than in verbal communication.
- 2 If the observer has a high prior that all keys make a sound, observing that one key makes a sound will confirm their prior.

 Likewise, if the observer has a low prior that all keys make a sound.

Do these intuitions align with the predictions of the baseline RSA model?

Outline

- 1 Introduction: Exhaustivity vs. Anti-exhaustivity
- 2 Basic scenario: 2 keys
- 3 Generalization to n keys
- 4 Model simulations
- 5 Conclusion

- Introduction: Exhaustivity vs. Anti-exhaustivity
- Basic scenario: 2 kevs
- Generalization to n
- Model simulation
- Conclusion
- References

Scenario setup

- Toy with two identical keys K_1 and K_2 .
- Simplifying assumption: " K_1 makes a sound" is tautological.
- Two possible worlds:
 - $w_{\{1\}}$: only K_1 makes sound.
 - $w_{\{1,2\}}$: both keys make sound.
- Two possible **actions** by the demonstrator:
 - \bullet a_1 : press only K_1 .
 - \bullet $a_{\{1,2\}}$: press both keys.

Intuitive predictions

- In $w_{\{1,2\}}$, if the demonstrator thinks the observer has a high prior $P(w_{\{1,2\}})$, they will only press one key to convey that both keys make sound.
- 2 If the demonstrator only presses one key, the observer will infer that both keys make a sound if their prior $P(w_{\{1,2\}})$ was above $\frac{1}{2}$, and will **not** infer that the second key makes a sound if $P(w_{\{1,2\}}) < \frac{1}{2}$.

- Exhaustivity vs. Anti-exhaustivit
- Basic scenario: 2 keys

Generalization to *I* keys

Model simulation

Conclusion

Framework: literal listener L_0

Literal listener L_0

For an utterance u and a world w:

$$L_0(w|u) = P(w|\llbracket u \rrbracket) = \begin{cases} \frac{P(w)}{P(\llbracket u \rrbracket)} & \text{if } w \in \llbracket u \rrbracket \\ 0 & \text{else} \end{cases}$$

Basic scenario: 2 keys

Generalization to *n* keys

Model simulation

Conclusio

References

where:

- $\|u\| =$ set of worlds where u is true
- P(w) = prior probability of world w

Framework: pragmatic speaker S_1 and pragmatic listener L_1

Utility function

$$U_1(u, w) = \log(L_0(w|u)) - c(u)$$
 where $c(u)$ is the cost of utterance.

Pragmatic speaker S_1

$$S_1(u|w) = \frac{\exp{(\lambda U_1(u,w))}}{\sum_{u'} \exp{(\lambda U_1(u',w))}}$$
 where λ is a rationality parameter.

The softmax function models the speaker as **approximately rational**: more useful utterances are more likely to be chosen.

Introduction: Exhaustivity vs. Anti-exhaustivit

Basic scenario: 2 kevs

Generalization to

Model simulation

Conclusion

Framework: pragmatic speaker S_1 and pragmatic listener L_1

Utility function

$$U_1(u, w) = \log(L_0(w|u)) - c(u)$$
 where $c(u)$ is the cost of utterance.

Pragmatic speaker S_1

$$S_1(u|w) = \frac{\exp{(\lambda U_1(u,w))}}{\sum_{u'} \exp{(\lambda U_1(u',w))}}$$
 where λ is a rationality parameter.

The softmax function models the speaker as **approximately rational**: more useful utterances are more likely to be chosen.

Basic scenario: 2

keys

Generalization to keys

Model simulation

Conclusio

References

Pragmatic listener L₁

$$L_1(w|u) = \frac{P(w)S_1(u|w)}{\sum_{w'} P(w)S_1(u|w')}$$

Equivalent to **Bayes' rule**: the listener knows the speaker's strategy and combines their **prior belief** P(w) about possible meanings with the **likelihood** $S_1(u|w)$.

Anti-exhaustivity conditions (speaker)

Speaker condition

$$S_1(a_1|w_{\{1,2\}}) > S_1(a_{\{1,2\}}|w_{\{1,2\}}) \quad \text{iff} \quad \underbrace{-\log(P(w_{\{1,2\}}))}_{\text{informativity of pressing } K_2} < \underbrace{c\left(a_{\{1,2\}},w_{\{1,2\}}\right)}_{\text{cost of pressing } K_2}$$

- Basic scenario: 2 keys
- Generalization to keys
- Model simulation

Conclusion

- Investing additional cost to press one more key is not justified by the gain in informativity.
- Speaker prefers under-informative action when:
 - High prior $P(w_{\{1,2\}})$ (keys likely both make sounds)
 - Cost of full demonstration $c(a_{\{1,2\}}, w_{\{1,2\}})$ is high
- Non-verbal case:
 - $P(w_{\{1,2\}}) \approx 1$ (identical keys)
 - lacksquare $-\log(P(w_{\{1,2\}}))pprox 0 o$ condition typically satisfied

Anti-exhaustivity conditions (listener)

Listener condition

$$L_1(w_{\{1,2\}}|a_1) > P(w_{\{1,2\}})$$

iff

Ш

$$\frac{-\log(P(w_{\{1,2\}})) - \left(-\log(P(w_{\{1\}}))\right)}{\text{difference in informativity}} < \underbrace{c(a_{\{1,2\}}, w_{\{1,2\}}) - c(a_{\{1,2\}}, w_{\{1\}})}_{\text{difference in cost}}$$

Basic scenario: 2 kevs

Generalization to *r* keys

Model simulation

Conclusio

- Breaking the symmetry between the two maximally informative actions: if we are in a counter-intuitive world, the speaker would incur greater loss by not being maximally informative.
- Non-verbal case simplifies to $P(w_{\{1,2\}}) > P(w_{\{1\}})$, which typically holds for identical keys...
 - \rightarrow slightly problematic prediction for greater number of keys.

Comparison between speaking and showing

Non-verbal

- Actions cannot be negated.
- Cost depends on action and on world.
- Cost difference = 0
- Anti-exhaustivity when:

$$P(w_{\{1,2\}}) > P(w_{\{1\}})$$

 \rightarrow easily satisfied

Verbal

- Messages can be negated.
- Cost depends only on utterance.
- Cost difference > 0:
 - "These keys make sound" (low cost)
 - "Only this key makes sound" (higher cost)
 - \rightarrow harder to satisfy the same inequality

Takeaway

Non-verbal demonstrations naturally lead to anti-exhaustive inferences under identical keys assumption.

Basic scenario: 2 keys
Generalization to

keys

_ . . .

Outline

1 Introduction: Exhaustivity vs. Anti-exhaustivity

2 Basic scenario: 2 keys

3 Generalization to n keys

4 Model simulations

5 Conclusion

- Exhaustivity vs.
 Anti-exhaustivity
- Basic scenario: 2 kevs

Generalization to *n* keys

Model simulation

Conclusion

Scenario setup

We extend the previous scenario to n identical keys $K_1, ..., K_n$.

- Simplified notations:
 - \mathbf{w}_{all} : world where all keys make a sound.
 - $W_{\text{all but one}}$: world where all keys except K_n make a sound.
- Possible actions:
 - \bullet $a_{\text{all but one}}$: press first n-1 keys.
 - \bullet a_{all} : press all n keys.

kevs

Generalization to n

Intuitive predictions for "all keys but one", with n keys

Does anti-exhaustivity still arise for the demonstrator or the observer when all keys but one are pressed, but the total number of keys is larger?

Introduction: Exhaustivity vs. Anti-exhaustivit

Basic scenario: 2 keys

Generalization to *n* keys

Model simulation

Conclusion

References

Demonstrator behavior

As *n* increases:

- Pressing one more key after n-1 becomes relatively cheaper.
- Anti-exhaustivity becomes less likely.

Observer interpretation

Seeing n-1 keys pressed:

- Why skip the last one after pressing so many?
- Anti-exhaustivity also less likely.
- \rightarrow How does the cost function shape reflect these behaviors?

Cost function typology

Cost function (adapted)

 $c(a_I, w_J) = c_0 + f(|I|)$ where:

- a_I is the action of pressing exactly the keys $\{K_i\}_{i\in I}$
- w_J where $J \subseteq \{1, ..., n\}$ is the set of keys that produce sounds

Cost-averse demonstrator:

- f convex (e.g., quadratic)
- Marginal cost increases with more keys
- "Increasingly lazy" behavior

Cost-indifferent demonstrator:

- f concave (e.g., radical)
- Marginal cost decreases with more keys
- "Thorough" behavior

Introduction: Exhaustivity vs. Anti-exhaustivity

Basic scenario: : keys

Generalization to *n* keys

Model simulation

Conclusion

Generalized conditions for anti-exhaustivity

Speaker condition

 $S_1(a_{\mathsf{all}\ \mathsf{but}\ \mathsf{one}}|w_{\mathsf{all}}) > S_1(a_{\mathsf{all}}|w_{\mathsf{all}})$

iff

$$\underbrace{-\log(P(w_{\text{all}}))}_{\text{informativity of pressing } K_n} < \underbrace{c(a_{\text{all}}, w_{\text{all}}) - c(a_{\text{all but one}}, w_{\text{all}})}_{\text{cost of pressing } K_n}$$

Exhaustivity vs. Anti-exhaustivity

Basic scenario: 2 keys

Generalization to n keys

Model simulation

Conclusio

- **Cost-averse** (*f* convex):
 - f(n) f(n-1) increases with n
 - Inequality easier to satisfy
- **Cost-indifferent** (*f* concave):
 - f(n) f(n-1) decreases with n
 - Inequality harder to satisfy

Generalized conditions for anti-exhaustivity

Listener condition

$$L_1(w_{\mathsf{all}}|a_{\mathsf{all but one}}) > P(w_{\mathsf{all}})$$

iff

$$\underbrace{-\log(P(w_{\mathsf{all}})) - (-\log(P(w_{\mathsf{all but one}})))}_{\mathsf{difference in informativity}} < \underbrace{c(a_{\mathsf{all}}, w_{\mathsf{all}}) - c(a_{\mathsf{all}}, w_{\mathsf{all but one}})}_{\mathsf{difference in cost}}$$

Generalization to *n* keys

Model simulation

Conclusio

- In the baseline model:
 - Always holds for identical keys
 - Predicts constant anti-exhaustivity
- But contradicts intuition when *n* is large...

Outline

- 1 Introduction: Exhaustivity vs. Anti-exhaustivity
- 2 Basic scenario: 2 keys
- 3 Generalization to n keys
- 4 Model simulations
- 5 Conclusion

- Introduction: Exhaustivity vs. Anti-exhaustivity
- Basic scenario: 2 kevs
- Generalization to n
- Model simulations
- References

Overview

Baseline RSA model implemented in Python.

Parameters:

■ Total keys: n = 100

• Keys pressed: n-1

Rationality parameter: $\lambda=3$ (from original paper Cremers, Wilcox, and Spector 2023)

Exhaustivity vs.
Anti-exhaustivity

Basic scenario: 2 kevs

Generalization to *n* keys

Model simulations

Conclusion

Reference:

Cost function implementation

Cost-averse (Convex)

Cost-Indifferent (Concave)

$$f(k) = ak^2 + bk + c$$

$$f(k) = a\sqrt{k} + b$$

Normalized cost

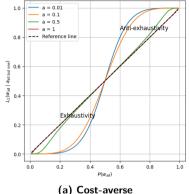
$$F(k) = \frac{f(k)}{f(n)}$$

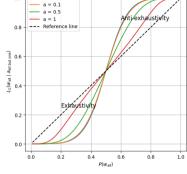
F(n) = 1 for all cases

 \rightarrow enables comparison between cost-averse and cost-indifferent.

Exhaustivity vs. Anti-exhaustivity

Basic scenario: 2 keys


Generalization to *i* keys


Model simulations

Conclusion

Simulation for "all keys but one"

Model simulations

(b) Cost-indifferent

When the observer is biased towards w_{all} , they are more prone to interpret the demonstrator's actions anti-exhaustively; conversely, they all less prone towards anti-exhaustivity if biased towards $w_{\text{all but one}}$.

Mathematically, this means the inflection point is always 0.5.

Outline

- 1 Introduction: Exhaustivity vs. Anti-exhaustivity
- 2 Basic scenario: 2 keys
- 3 Generalization to n keys
- 4 Model simulations
- 5 Conclusion

- Introduction: Exhaustivity vs. Anti-exhaustivity
- Basic scenario: 2
- Generalization to *n* keys
- Model simulations
- Conclusion

Conclusion and perspectives

Intuitive predictions

- ✓ Anti-exhaustivity arises more easily in non-verbal than in verbal communication.
- ✓ If the observer has a high prior that all keys make a sound, observing that one key makes a sound will not change their prior.

 Likewise, if the observer has a low prior that all keys make a sound.
 - \rightarrow But intuitions are not captured by the model for n-1 keys with great values of n. Intuitively, anti-exhaustivity should arise **much less easily**, both for the demonstrator and the observer.

- Introduction: Exhaustivity vs. Anti-exhaustivity
- Basic scenario: 2 kevs
- Generalization to *r* kevs
- Model simulations
- Conclusion
- References

Conclusion and perspectives

Perspectives:

- Refine the model to incorporate the 'penalty' of pressing keys 'for nothing' and to better capture the intuition for n-1 keys with great values of n.
- Explore more complex RSA models.
- Alternative set-ups with objects that do not have an expected behavior given our world knowledge.
- Empirical validation.

- Exhaustivity vs. Anti-exhaustivity
- Basic scenario: 2 keys
- Generalization to *n* keys
- Model simulation
- Conclusion
- Reference

Thank you!

Specials thanks to Benjamin Spector, Salvador Mascarenhas, the audience of the *Salvador lab*, and the ESSLLI reviewers.

References I

References

Chierchia, Gennaro, Danny Fox, and Benjamin Spector (2012). "The grammatical view of scalar implicatures and the relationship between semantics and pragmatics". In:

Semantics: An international handbook of natural language meaning 3, pp. 2297-2332.

Cremers, A., E. G. Wilcox, and Benjamin Spector (2023). "Exhaustivity and Anti-Exhaustivity in the RSA Framework: Testing the Effect of Prior Beliefs". In: Cognitive Science 47.5.

Frank, Michael C and Noah D Goodman (2012). "Predicting pragmatic reasoning in language games". In: Science 336.6084, pp. 998–998.